4 research outputs found

    GPUHElib and DistributedHElib: Distributed Computing Variants of HElib, a Homomorphic Encryption Library

    Get PDF
    Homomorphic Encryption, an encryption scheme only developed in the last five years, allows for arbitrary operations to be performed on encrypted data. Using this scheme, a user can encrypt data, and send it to an online service. The online service can then perform an operation on the data and generate an encrypted result. This encrypted result is then sent back to the user, who decrypts it. This decryption produces the same data as if the operation performed by the online service had been performed on the unencrypted data. This is revolutionary because it allows for users to rely on online services, even untrusted online services, to perform operations on their data, without the online service gaining any knowledge from their data. A prominent implementation of homomorphic encryption is HElib. While one is able to perform homomorphic encryption with this library, there are problems with it. It, like all other homomorphic encryption libraries, is slow relative to other encryption systems. Thus there is a need to speed it up. Because homomorphic encryption will be deployed on online services, many of them distributed systems, it is natural to modify HElib to utilize some of the tools that are available on them in an attempt to speed up run times. Thus two modified libraries were designed: GPUHElib, which utilizes a GPU, and DistributedHElib, which utilizes a distributed computing design. These designs were then tested against the original library to see if they provided any speed up

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Systemic Therapy in Men With Metastatic Castration-Resistant Prostate Cancer: American Society of Clinical Oncology and Cancer Care Ontario Clinical Practice Guideline

    No full text
    PURPOSE: To provide treatment recommendations for men with metastatic castration-resistant prostate cancer (CRPC). METHODS: The American Society of Clinical Oncology and Cancer Care Ontario convened an expert panel to develop evidence-based recommendations informed by a systematic review of the literature. RESULTS: When added to androgen deprivation, therapies demonstrating improved survival, improved quality of life (QOL), and favorable benefit-harm balance include abiraterone acetate/prednisone, enzalutamide, and radium-223 ((223)Ra; for men with predominantly bone metastases). Improved survival and QOL with moderate toxicity risk are associated with docetaxel/prednisone. For asymptomatic/minimally symptomatic men, improved survival with unclear QOL impact and low toxicity are associated with sipuleucel-T. For men who previously received docetaxel, improved survival, unclear QOL impact, and moderate to high toxicity risk are associated with cabazitaxel/prednisone. Modest QOL benefit (without survival benefit) and high toxicity risk are associated with mitoxantrone/prednisone after docetaxel. No benefit and excess toxicity are observed with bevacizumab, estramustine, and sunitinib. RECOMMENDATIONS: Continue androgen deprivation (pharmaceutical or surgical) indefinitely. Abiraterone acetate/prednisone, enzalutamide, or (223)Ra should be offered; docetaxel/prednisone should also be offered, accompanied by discussion of toxicity risk. Sipuleucel-T may be offered to asymptomatic/minimally symptomatic men. For men who have experienced progression with docetaxel, cabazitaxel may be offered, accompanied by discussion of toxicity risk. Mitoxantrone may be offered, accompanied by discussion of limited clinical benefit and toxicity risk. Ketoconazole or antiandrogens (eg, bicalutamide, flutamide, nilutamide) may be offered, accompanied by discussion of limited known clinical benefit. Bevacizumab, estramustine, and sunitinib should not be offered. There is insufficient evidence to evaluate optimal sequences or combinations of therapies. Palliative care should be offered to all patients
    corecore